2,052 research outputs found

    Quantum planes and quantum cylinders from Poisson homogeneous spaces

    Get PDF
    Quantum planes and a new quantum cylinder are obtained as quantization of Poisson homogeneous spaces of two different Poisson structures on classical Euclidean group E(2).Comment: 13 pages, plain Tex, no figure

    Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2

    Full text link
    The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. This leads naturally to a picture of co-existence of localized spins and itinerant charge carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our picture brings coherence to a variety of measurements ranging from NMR to optical to thermal transport. Our results also allow us to take the first step towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We suggest the local moments may form a quantum spin liquid state and we propose experimental test of our hypothesis.Comment: 16 pages, 5 figure

    Quantized algebras of functions on homogeneous spaces with Poisson stabilizers

    Full text link
    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0<q<1. We study a quantization C(G_q/K_q) of the algebra of continuous functions on G/K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C(G_q/K_q) and obtain a composition series for C(G_q/K_q). We describe closures of the symplectic leaves of G/K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C(G_q/K_q). Next we show that the family of C*-algebras C(G_q/K_q), 0<q\le1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra \C[G/K]. Finally, extending a result of Nagy, we show that C(G_q/K_q) is canonically KK-equivalent to C(G/K).Comment: 23 pages; minor changes, typos correcte

    An Empirical Charge Transfer Potential with Correct Dissociation Limits

    Full text link
    The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) Explicit decomposition of the total system electron density is invoked; (2) The charge is defined through the density decomposition into constituent contributions; (3) The charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) A reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure

    An Obstruction to Quantization of the Sphere

    Get PDF
    In the standard example of strict deformation quantization of the symplectic sphere S2S^2, the set of allowed values of the quantization parameter ℏ\hbar is not connected; indeed, it is almost discrete. Li recently constructed a class of examples (including S2S^2) in which ℏ\hbar can take any value in an interval, but these examples are badly behaved. Here, I identify a natural additional axiom for strict deformation quantization and prove that it implies that the parameter set for quantizing S2S^2 is never connected.Comment: 23 page. v2: changed sign conventio

    Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle

    Get PDF
    To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle

    Multiscale mechanisms of nutritionally induced property variation in spider silks.

    Full text link
    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers

    Hot and repulsive traffic flow

    Full text link
    We study a message passing model, applicable also to traffic problems. The model is implemented in a discrete lattice, where particles move towards their destination, with fluctuations around the minimal distance path. A repulsive interaction between particles is introduced in order to avoid the appearance of traffic jam. We have studied the parameter space finding regions of fluid traffic, and saturated ones, being separated by abrupt changes. The improvement of the system performance is also explored, by the introduction of a non-constant potential acting on the particles. Finally, we deal with the behavior of the system when temporary failures in the transmission occurs.Comment: 22 pages, uuencoded gzipped postscript file. 11 figures include
    • 

    corecore